Auto-induction protein expression

ZYP auto-induction media:

- N-Z-Amine (3 g)
- yeast extract (1.5 g)
- 1M K₂HPO₄ (15 mL)
- $1M KH_2PO_4 (15 mL)$
- $1M (NH_4)_2SO_4 (7.5 mL)$
- dH_2O (to 300 mL)

This mix has to be autoclaved, then when the media is cold add:

- $1M MgSO_4 (0,6 mL)$ *stealized by filtration (0.22 um)
- 1000x trace element solution (0,6 mL) consists of: FeCl $_2$ (50 mM), CaCl $_2$ (20 mM), MnCl $_2$ (10 mM), ZnSO $_4$ (10 mM), CoCl $_2$ (2 mM), CuCl $_2$ (2 mM), NiCl $_2$ (2 mM), HCl (60 mM), Na $_2$ MoO $_4$ (2 mM), Na $_2$ SeO $_4$ (2 mM) and H $_3$ BO $_3$ (2 mM) *stealized by filtration (0.22 um)
- 50x 5052 solution (6 mL) consists of: glycerol (25 g), glucose (2,5 g), α -lactose monohydrate (10 g) and dH₂O (to 100 mL) *stealized by filtration (0.22 um)
- antibiotic (50-100 μ g/mL)

For an easier in-house media, a powder mix could be prepared. For $\#100\ 300 mL$ batches, mix:

- 120 g N-Z-Amine
- 60 g yeast extract (1.5 g)
- $104 \text{ g } \text{K}_2\text{HPO}_4 \text{ (15 mL)}$
- 82 g KH_2PO_4 (15 mL)
- $39 \text{ g (NH}_4)_2 \text{SO}_4 \text{ (7.5 mL)}$

Therefore, weight 9.1~g of such mixture and add 293 mL of water. Autoclave and then add MgSO₄, 1000x trace element, 50x 5052 solution, and antibiotic as reported before.

expression:

- pick a single colony from a LB plate and inoculate in the flask containing the media $\,$
- leave under shacking 200 rpm at the wanted temperature.

Normally 37 $^{\circ}$ C for 20-24 hours are acceptable condition for a good expression of many common proteins, otherwise the system could be optimized. For instance, 8 hours at 37 $^{\circ}$ C (when the glucose is feeding the cells and there is not protein expression) and then decrease to 28 $^{\circ}$ C for other 20 hours to allow the expression.